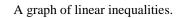
SOLUTIONS TO S.4 AND S3 MATHS SEMINAR ITEM SCHEME – 2025 AT MT ST HENRY'S HIGH SCHOOL MUKONO

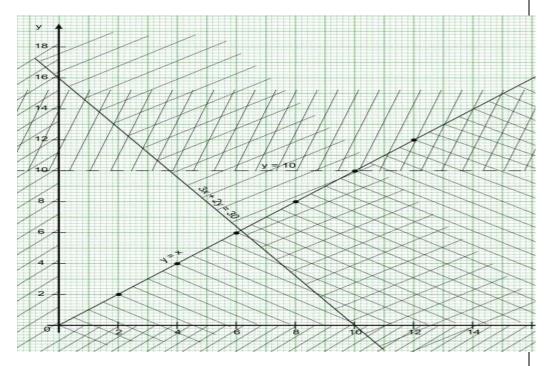
Item	Solution	Indicators
		(competenc
1(a)	Two million eight hundred eighty—five	es)
1(a)	thousand shillings only $= shs 2,885,000$	
	Groceries = $\frac{1}{5}$ × 2,885,000	
	= shs 577,000	
	She will spend shs 577,000 on groceries	
	Parents' upkeep	
	$=\frac{30}{100} \times 2,885,000$	
	= shs 865,500	
	She will spend shs 865, 500 on parents' upkeep.	
	Personal use $shs 400,000/=$	
	Investment = $2,8885,000 - (577,000 + 865500 + 400,000)$	
	= 2,885,000 - 1,842,500	
	= shs 1,042,500	
	She will invest <i>shs</i> 1, 042, 500	
1(b)	For monthly grocery shopping	
	Susan: Husband	
	2 : 3 $Total parts = 2 + 3 = 5$	
	Let the total amount spent on monthly grocery be G	
	$\frac{2}{5} \times G = 577,000$	
	G = 1442500	
	They will spend a total of 1,442,500.	
	Husband's contribution = $\frac{3}{5} \times 1,442,500 = 865,000$	
	Suzan's contribution = 577,000	
2(a)	Men: women = $(5:4) \times 3$	
2(a)	= 15:12	
	Women: women = $(3:7) \times 4$	
	= 12 : 28	
	Men: women: children = $15: 12: 28$ Total ratio = $15 + 12 + 28 = 55$	
	Total radio = 13 + 12 + 20 = 33	
	Let the total number of people attending be x	
	$\frac{28}{55}ofx = 224$	
	55 7 224 × 55	
	$x = \frac{224 \times 55}{28}$	
	x = 440	
	Number of women and men = $440 - 224$ = 216	
	∴ the total number of men and women who visited the camping site that day was 216.	
	Alt. 2	
	Total ratio of men and women = $15 + 12 = 27$	
	Number of women and men	
	$= \frac{no. \ of \ children}{ratio \ of \ children} \times (total \ ratio \ of \ men \ and \ women)$	
	224	
	$=\frac{2}{28}\times 27$	

```
2(b)
         Let the new changes for children and adults be x and y respectively
         For children:
         x = \frac{80}{100} \times 15,000
             1,200,000
        x = \frac{1}{100}
         x = 12,000
         For Adults:
        y = \frac{80}{100} \times 30,000y = \frac{2,400,000}{100}
         y = 24,000
         ∴ the cost of the tickets for children and adults in 2025 are UGX 12,000 and UGX24,000
2(c)
         Children payments = 224 \times 12000 = UGX2,688,000
         Adults' payments = 216 \times 24000 = UGX5,184,000
         Total amount = 2,688,000 + 5,184,000 = UGX7,872,000
         \therefore The camping site collected UGX 7,872,000 altogether on that day.
3(a)
         Cost of water used = Service fee + Price × Number of units per Unit
             Let the cost of water used be C
             Let the number of units be n
             Let the price per unit be k
             C = 3500 + kn
         When n = 4, C = shs 15,500
                 \Rightarrow 15,500 = 3500 + 4k.....(i)
         When n = 10, C = 33,500
                 33,500 = 3500 + 10k \dots (ii)
                 33,500 = 3500 + 10k
                  15,500 = 3500 + 4k
                  18,000 = 0 + 6k
             \frac{18,000}{6} = \frac{6k}{k}
             k = 3,000
         C = 3500 + 300n
         Cost of water used = 3,500 + 3000n
                                  2<sup>nd</sup>
                                           3<sup>rd</sup>
                                                                  5<sup>th</sup>
3(b)
                   1<sup>st</sup> meter
                                                        4^{th}
                                                                           6<sup>th</sup>
                                                                                     7^{\text{th}}
                                                                                                8<sup>th</sup>
                   20000
                                21500 23000 24500 26000 27500 29000
                                                                                           30500
                                   +1500 + 1500 + 1500
                                                                  + 1500
                                                                              +1500 + 1500
                               10^{th}
                                           11^{th}
                   \mathbf{Q}^{\text{th}}
               32000
                              33500
                                            35000
                       +1500
                                    + 1500
         Alternatively
         U_n = a + (n-1)d
                                a = 20000, d = 1500
           = 20000 + (n-1)x1500
           = 20000 + 1500n - 1500
           = 20000 - 1500 + 1500n
           = 1500n + 18500
         For n = 11
         = 1500 \times 11 + 18500
         = 35000
         Cost of digging the last meter is shs 35,000
         (ii) 20,000 + 21,500 + 23,000 + 24,500 + 26,000 + 2750 + 29000 + 30,500 + 32000
         +33500 + 35,000
         Shs 302,500
```

	The money will be enough for digging the well.	
	Or	
	20,000 = 1500x10	
	$20,000 + 15000 = \cos t \text{ of digging last meter } 35,000$	
4(a)	for the first line (2,-4) and (-6,9)	
	gradient, $m_1 = \frac{9-(-4)}{-6-2}$	
	$m_1 = -\frac{13}{8}$	
	Taking point $(-6, 9)$ and (x, y)	
	$-\frac{13}{8} = \frac{y-9}{x-(-6)}$	
	-13(x+6) = 8(y-9)	
	-13x - 78 = 8y - 72	
	$8y = -13x - 6$ $y = -\frac{13}{8}x - \frac{3}{4}$	
	$y = -\frac{13}{9}x - \frac{3}{4}$	
	8 4	
	for the second line, since its perpendicular to the first line	
	then $m_1 \times m_2 = -1$	
	$-\frac{13}{8}m_2 = -1,$	
	$m_2 = \frac{8}{13}$	
	Taking point $(-4,6)$ and (x,y)	
	$\frac{8}{13} = \frac{y-6}{x-(-4)}$	
	$ \begin{vmatrix} 13 & x - (-4) \\ 8(x+4) = 13(y-6) \end{vmatrix} $	
	8x + 32 = 13y - 78	
	13y = 8x + 110	
	$y = \frac{8}{13}x + \frac{110}{13}$	
	\therefore the engineer will use lines $y = -\frac{13}{8}x - \frac{3}{4}$ and $y = \frac{8}{13}x + \frac{110}{13}$	
4(b)	let the length of the rectangular park be x m then breadth = $(x - 3)m$	
	/ \	
	12m	
	(x-3)	
	x (x-3)m	
	Area of rectangular park = area of $\Delta + 4$	
	$x(x-3) = \frac{1}{2}(x-3) \times 12 + 4$	
	$x^2 - 3x = 6x^2 - 18 + 4$	
	$x^2 - 9x + 14 = 0$	
	Alt-1	
	factorization, factors (-2, -7) $x^2 - 2x - 7x + 14 = 0$	
	$\begin{cases} x - 2x - 7x + 14 = 0 \\ (x^2 - 2x) + (-7x + 14) = 0 \end{cases}$	
	x(x-2) - 7(x-2) = 0	
	(x-7)(x-2)=0	
	either $x = 7$ or $x = 2$	
	but $x \neq 2$ because the breadth will be negative which is not possible. $\Rightarrow x = 7$	
	\therefore length of the rectangular park is 7m and breadth is 4m	

	Alt-2
	Quadratic formula
	a = 1, b = -9, c = 14
	$-(-9) \pm \sqrt{(-9)^2 - (4 \times 1 \times 14)}$
	$x = {2 \times 1}$
	$x = \frac{-(-9) \pm \sqrt{(-9)^2 - (4 \times 1 \times 14)}}{2 \times 1}$ $x = \frac{-9 \pm \sqrt{81 - 56}}{2} = \frac{9 \pm 5}{5}$ either $x = \frac{9+5}{2}$ or $x = \frac{9-5}{2}$
	$\begin{bmatrix} x - & 2 & -5 \\ 0.5 & 0.5 \end{bmatrix}$
	either $x = \frac{9+3}{2}$ or $x = \frac{9-3}{2}$
	$\therefore x = 7 \text{ or } x = 2$
	Alt-3
	Completing squares
	$x^2 - 9x + 14 = 0$
	$x^2 - 9x = -14$
	$x^{2} - 9x + \left(\frac{1}{2} \times 9\right)^{2} = -14 + \left(\frac{9}{2}\right)^{2}$ $(x - 9)^{2} = -14 + \frac{81}{4}$ $x - \frac{9}{2} = \pm \sqrt{\frac{25}{4}}$
	$(2)^{2} = 14 + 81$
	$(x-9)^{-} = -14 + \frac{1}{4}$
	9 25
	$x-\frac{1}{2}=\pm\sqrt{\frac{4}{4}}$
	either $x = \frac{9+5}{2}$ or $x = \frac{9-5}{2}$
	$\therefore x = 7 \text{ or } x = 2$
·	


5 (a) Let *x* represent the number of baskets and *y* represent the number of mats made.


$$y < 10$$
.....(1)
 $y \ge x$(2)
 $\frac{9}{4}x + \frac{3}{2}y \le 22.5 \text{ or } 9x + 6y \le 90 \text{ or } 3x + 2y \le 30$(3)
 $x \ge 0$(4)
 $y \ge 0$(5)

Profit function, P = 40x + 28y(6)

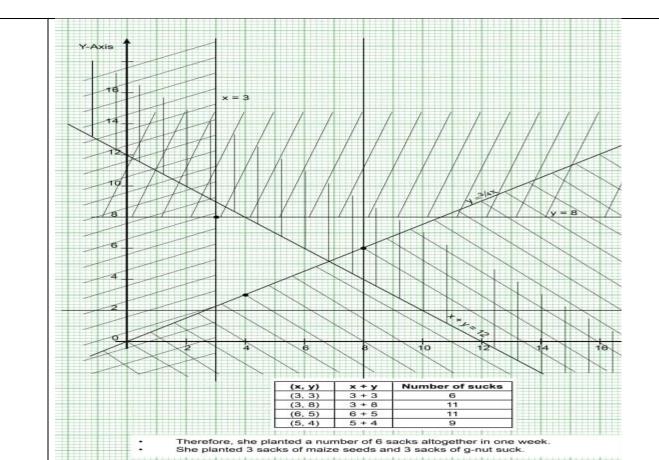
(b)

Inequality	Line	Nature	Coordinates
<i>y</i> < 10	y = 10	dotted	(2, 10), (6, 10)
$y \ge x$	y = x	bold	(4, 4), (8, 8), (12, 12)
$3x + 2y \le 30$	3x + 2y = 30	<u>bold</u>	(0, 15), (10, 0)
$x \ge 0$	x = 0		y - axis
$y \ge 0$	y = 0		x - axis

(c) P = 40x + 28y

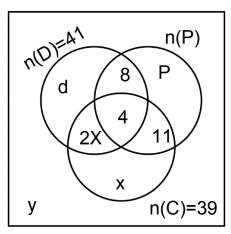
(x,y)	40x + 28y	Amount
(4,9)	40(4) + 28(9)	412
(5,8)	40(4) + 28(8)	424
(6,6)	40(6) + 28(6)	408

 \div He should make 5 baskets and 8 mats in order to get a maximum profit.


let x represent the number of maize seed sacks y represent the number of g-nut seed sacks $x \ge 3$

6(a)

 $y \le 8$


x + y < 12

Line	Nature	Coordinates
x = 3	——— bold	
y = 8	bold	
x + y = 12	broken	(0,12), (12,0)
$y = \frac{3}{4}x$	broken	(0,0), (4, 3), (8, 6)

A Venn diagram

7(a)(i)

Let D represent Dubai, C represent Cairo and P represent Paris Let $n(C)_{only} = x, n(D \cap C)_{0nly} = 2x, n(D' \cap P' \cap C') = y$

For Cairo:

$$39 = x + 2x + 4 + 11$$

$$39 = 3x + 15$$

$$x = 8$$

For Dubai;

$$41 = d + 8 + 4 + 2x$$

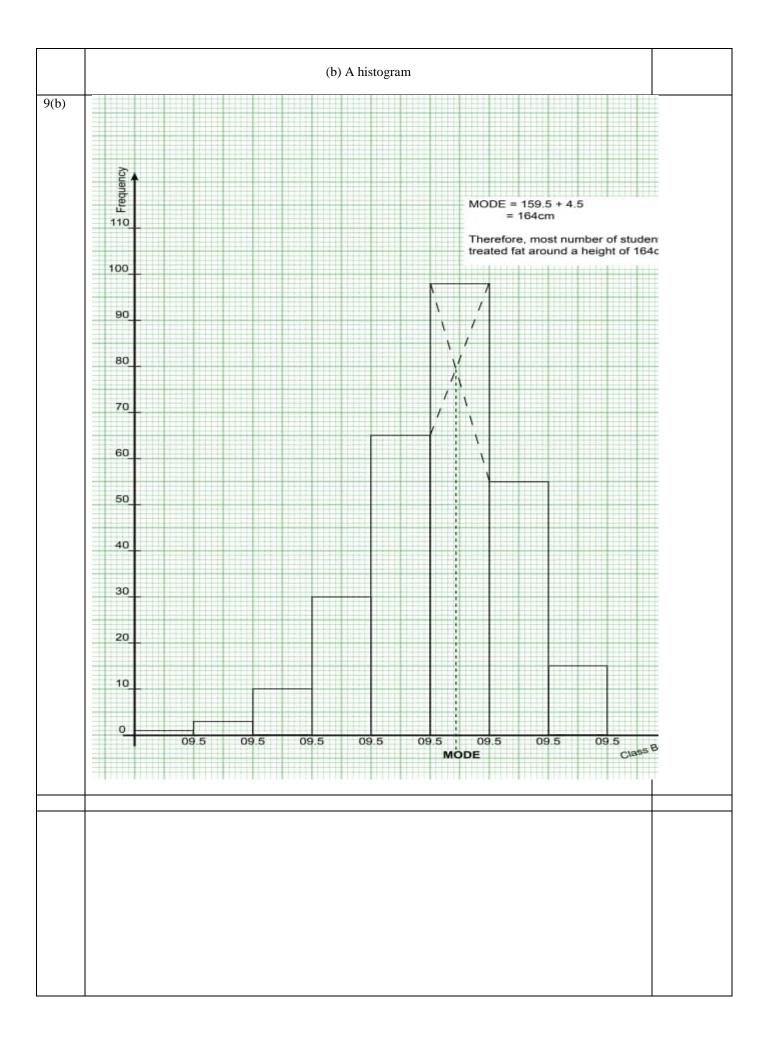
$$41 = d + 28$$

$$d = 13$$

(ii) 7(b)	For at least one city $74 = (d + p + x) + (8 + 16 + 11 + 4)$ $74 = p + 21 + 39$ $p = 14$ $n(P) = 14 + 8 + 4 + 11 = 37$ $\therefore 37 \text{ people had visited Paris.}$ Had not visited any of the three cities $y = 90 - 74$ $y = 16$ $\therefore 16 \text{ people had not visited any of the three cities.}$ $P(\text{visited at least two cities})$ $n(\text{at least two cities}) = 8 + 16 + 11 + 4 = 39$ $\text{probability of visiting at least two cities} = \frac{39}{90} \times 100$ $= 43.333\%$ Advice:	
	Since 43.333% is less than 50%, I advise the company travel agent to organize the tour.	
8(a)	Sample space = 2^n , n= number of times tossed For $n = 3$, $S = 2^3 = 8$ Let the coin be represented by H-Head, T-Tail Sample space, $S = [HHT, HTH, HTT, HHH, THH, THT, THH, TTT]$ Probability of starting the game = $\frac{1}{8}$	
(b)	Let R represent red marbles G represent green marbles	
(a)	The probability of winning the game is $\frac{1}{5}$ or 0.2	
(c)	P(being kicked out of the game) $= P(R_1 \cap R_2 \cap G_3) + P(G_1 \cap G_2 \cap R_3)$ $= \left(\frac{6}{10} \times \frac{5}{9} \times \frac{4}{8}\right) + \left(\frac{4}{10} \times \frac{3}{9} \times \frac{6}{8}\right)$ $= \frac{120 + 72}{720} = \frac{192}{720} = \frac{4}{15} \text{ or } 0.2667 \text{ (At least 4dp)}$ The probability of winning the game is $\frac{4}{15}$ or 0.2667	

9(a)

Assumed mean, A = 154.5cm


A frequency distribution tab

			r r rrequerre		•
class	f	x	d = x - A	fd	Cbs
110-119	1	114.5	-40	-40	109.5-119.5
120-129	3	124.5	-30	-90	119.5-129.5
130-139	10	134.5	-20	-200	129.5-139.5
140-149	28	144.5	-10	-280	139.5-149.5
150-159	65	154.5	0	0	149.5-159.5
160-169	98	164.5	10	980	159.5-169.5
170-179	55	174.5	20	1100	169.5-179.5
180-189	15	184.5	30	450	179.5-189.5
	$\sum f = 275$			$\sum fd = 1920$	

Average height =
$$A + \frac{\sum fd}{\sum f}$$

= 154.5 + $\frac{1920}{275}$

$$= 154.5 + \frac{25}{2}$$

- = 154.5 + 6.9818
- = 161.4818
- ≈ 161.48 cm (at least 2dp) ∴ the average height of students is 161.48 cm.

A frequency distribution table.	A	frequency	distribution	table.
---------------------------------	---	-----------	--------------	--------

Mass kg	Number of bags (f)	Mid mass (x)	fx
10 - 19	50	145	725
20 – 29	65	24.5	1592.5
30 – 39	95	34.5	3277.5
40 - 49	105	44.5	4672.5
50 – 59	95	54.5	5177.5
60 – 69	75	64.5	4837.5
70 – 79	65	74.5	4842.5
80 – 89	40	84.5	3380
90 – 99	10	94.5	945
	$\Sigma f = 600$		$\sum fx = 29,450$

Mean production =
$$\frac{\sum fx}{\sum f}$$

= $\frac{29,450}{600}$
= 49.08
 ≈ 49.1

The mean production per year was 49.1 kg

(b) (i) Modal mass =
$$l_1 + \left(\frac{D_1}{D_1 + D_2}\right)c$$

$$l_1 = 39.5$$

 $D_1 = 105 - 95 = 10$
 $D_2 = 105 - 95 = 10$
 $c = 10$

Modal mass =
$$39.5 + \left(\frac{10}{10+10}\right) 10$$

= $39.5 + \frac{10}{20} \times 10$
= $39.5 + 5$
= $44.5 \ kg$

The commonest mass produced is 44.5kg.

(ii) The farmer with change to a new seed variety because the commonest mass produced is much less than 55kg.

11(a)

A frequency distribution table

		1111090011	· J	
Class	tally	f	c.f	Class boundaries
20-29	////	4	4	19.5-29.5
30-39	//// ////	10	14	29.5-39.5
40-49	//// /	6	20	39.5-49.5
50-59	//// //// /	11	31	49.5-59.5
60-69	//// /	6	37	59.5-69.5
70-79	//// ////	9	46	69.5-79.5
80-89	////	4	50	79.5-89.5

median,
$$\frac{N}{2} = \frac{50}{2} = 25^{th}$$
 position median class 50–59, Cbs=49.5–59.5, $cf_b = 20$, $f_m = 11$, $c = 10$

	$median = 49.5 + \left(\frac{25-20}{11}\right)10$
	$=49.5 + \frac{50}{11}$
	11 = 49.5 + 4.5455
	= 54.0455
	≈ 54.05 (at least 2dp)
	∴ Half of the candidates scored 54.05% in the aptitude test.
	Number of candidates whose score exceed 54.5
	Alt. 1 Let the number be N for candidates below 54.5
	$54.5 = 49.5 + \left(\frac{N - 20}{11}\right) 10$
	$54.5 = 49.5 + \left(\frac{11}{11}\right) 10$
	$5.5 = N - 20$ $N = 25.5 \approx 26 \text{ candidates}$
	Above $= 50 - 26 = 24$
	∴ Number of candidates whose score exceed 54.5 was 24 candidates.
	Alt 2. to (b) and (c)
	Tite 2. to (b) and (c)
	Cumulative b) Median = 55 Frequency
	Therefore, half of the candidates scored 55%
	c) Number of candidates whose score exceed 54.5 were 24 candidates
	50
	45
	40
	35
	30
	25 26th Position
	20
	15
	10
	5
	19.5 29.5 39.5 49.5 59.5 69.5 79.5 89.5 Class MODE Boundaries
(a)	Performance of tiger house
(a)	Performance of tiger house
(a)	1st 2nd 3rd
(a)	

$$\begin{pmatrix} 3 & 4 & 0 \\ 1 & 2 & 1 \end{pmatrix} 2 \times 3$$

Points

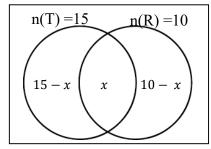
$$\begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$
 3×1

Number of points
$$= \begin{pmatrix} 3 & 4 & 0 \\ 1 & 2 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 3 \times 3 + 4 \times 2 + 0 \times 1 \\ 1 \times 3 + 2 \times 2 + 1 \times 1 \end{pmatrix}$$

$$= \begin{pmatrix} 17 \\ 8 \end{pmatrix}$$
Total points for tiger = 38°

Total points for tiger = 387 + 17 + 8= 412


Tiger got 25 points in the races.

- (b)Tiger house emerged the winner with 412 points
- (c) Let those excellent in the track be T Let those excellent in Relay be R

A Venn diagram

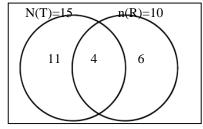
let those who are good in both track and relays be x

$$N(\Sigma)=21$$

$$15 - x + x + 10 - x = 21$$

$$25 - x = 21$$

$$-x = 21 - 25$$

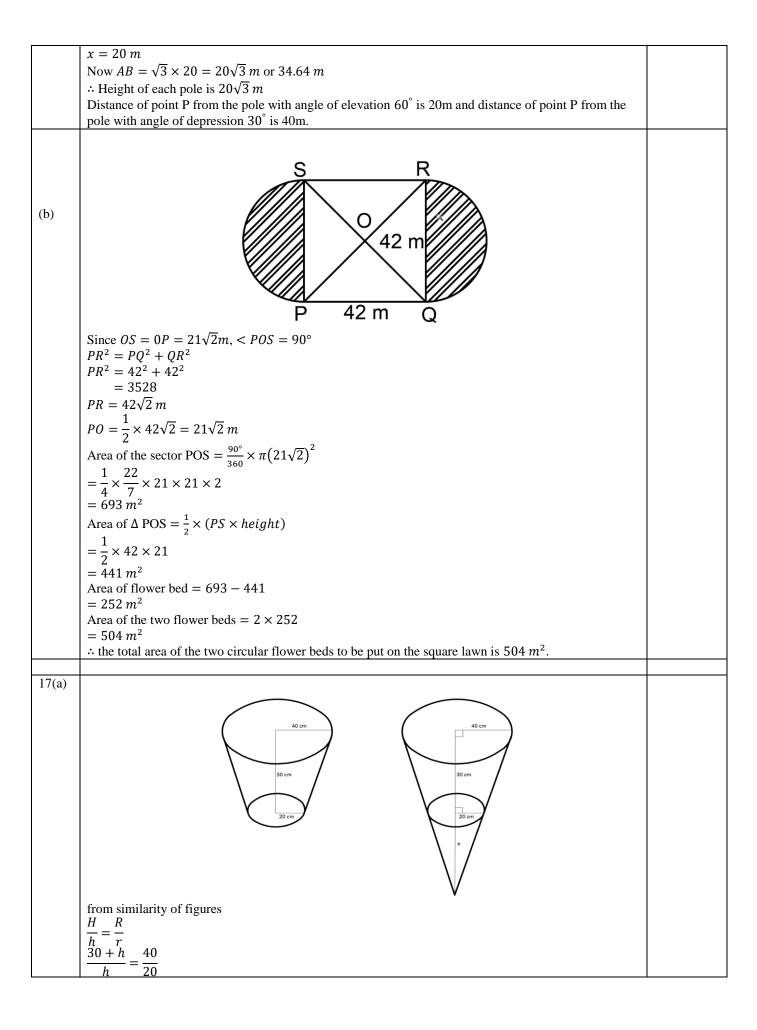

$$-x = 21 - 25$$

$$\frac{-x}{-1} = \frac{-4}{-1}$$

$$x = 4$$

$$x^{-1} = 4$$

$$N(\Sigma)=21$$



Those who were excellent in both events were only 4

13(a)	Minutes to hrs., time $=\frac{40}{60} = \frac{2}{3}hrs$ Distance from TC_1 to TC_2 $=60 \times \frac{40}{60}$ or $60 \times \frac{2}{3}$ $=40$ km Scale 1cm: 10 km Ware house to $TC_1 = \frac{80}{10} = 8cm$ TC_1 to $TC_2 = \frac{40}{10} = 4cm$ TC_2 to $TC_3 = \frac{60}{10} = 6cm$ Sketch	
	Accurate N Ware house Direct route N Tc ₃ 6cm	
	Distance of the direct route from the third Centre to the company's ware house = $13cm$ (accept 13 ± 0.1)cm ($12.9-13.1$)cm Distance in km = 13×10 = 130 km	
(b)	Total distance: warehouse to TC_3 = 80 + 40 + 60 = 180 km Fuel for 180 km = $\frac{180}{15}$ = 12 litres litres = 20 - 12 = 8 litres	

	fuel for direct route = $\frac{130}{15}$		
	= 8.6667 litres		
	Daniel should add more fuel in the car. Since the direct route requires 8.6667 litres and there remains		
	only 8 liters, he should add more 0.6667 liters or more in the car.		
14	Hexagon = 6 sides		
	Interior angle $\frac{360}{6} = 60^{\circ}$		
	A Com B		
	Triangle OAB and OPQ are equilateral triangles		
	Area of triangle OAB $=\frac{1}{2} \times 6 \times 6 \sin 60$		
	$=\frac{1}{2}\times 36\sin 60$		
	$=18\sin 60$		
	Area of triangle OPQ $=\frac{1}{2} \times 8 \times 8 \sin 60$		
	$= 32\sin 60$		
	Area of shaded trapezium = $32 \sin 60 - 18 \sin 60$ = $14 \sin 60$		
	= 12.1243		
	Total area of shaded part $= 12.7243 \times 6$		
	$= 72.7461$ $= 72.7 \text{cm}^2$		
	Area between the two hexagons on sketch = 72.7 cm^2		
	b) Area of actual pool = $5 \times$ area of sketch		
	$= 5 \times 72.7$		
	$= 363.5cm^2$		
	Volume of water to a depth of 100 cm		
	$= area \times depth$		
	$= 363.5 \times 100$		
	$= 36,350cm^3$		
	The volume of water that will be required to fill the pool will be 36,350cm ³		
15(a)($A = P\left(1 + \frac{r}{100}\right)^n$ $R = 20,000 \text{ m} = 200\% \text{ mor hour m} = 4 \text{ hrs}$		
i)	P = 20,000, r = 50% per nour, $n = 4 hrs$		
	$A = 20,000 \left(1 + \frac{30}{100}\right)^4$		
	$= 20,000 \times 1.3^4$		
	= 20,000 × 2.8561 = 57,122		
	∴ After 4 hrs there will be 57,122 bacteria.		
(;;)	P = 20,000, r = 30% per hour, $n = 4$ hrs		
(ii)	$20,000 \left(1 + \frac{30}{100}\right)^n = 1,000,000$		
	$1.3^n = 50$		
	Introduce logarithm on both sides		
	$\log 1.3^n = \log 50$ $\log 50$		
	$n = \frac{\log 30}{\log 1.3}$		
	106 110		

	$n = \frac{1.69897}{1.000000000000000000000000000000000000$
	n = 0.11394 $n = 14.911$
	$n \approx 15 \text{ hrs}$ \therefore After 15 hrs from the start of the experiment, the number of bacteria will be greater than one
	million.
(b)	Cylinder diameter = 7cm, Radius = $\frac{7}{2}$ = 3.5cm, Height, h = 5cm
	5 cm
	10 cm
	15 cm
	S.A of remaining block = (T.S.A of cuboidal block + curved SA of 2 cylinders)–(Areas of 2 circles) = $2(lw + wh + lh) + 2(2\pi rl) - 2(\pi r^2)$
	$= 2(15 \times 10 + 10 \times 5 + 5 \times 15) + 2\left(2 \times \frac{22}{7} \times \frac{7}{2} \times 5\right)$
	\
	$-\left[2\times\frac{22}{7}\times\left(\frac{7}{2}\right)^2\right]$
	$= 550 + 220 - 77$ $= 693 cm^2$
	Amount needed = surface area x rate
	$= 693 \times 100$ = $UGX69,300$.
	∴ The amount of money needed to vanish the remaining block is
	UGX 69,300.
16(a)	Let AB and CD be two poles
	c
	$B \longleftrightarrow X \longrightarrow P \longleftrightarrow 80 - X \longrightarrow D$ 80 m
	In right $\triangle PBA$, $\tan 60^{\circ} = \frac{AB}{PB}$
	$\sqrt{3} = \frac{AB}{x}$
	$AB = \sqrt{3}x \dots \dots \dots (1)$ In winds ACDB top 308 - CD
	In right \triangle CDP, $\tan 30^{\circ} = \frac{CD}{PD}$ $CD = \tan 30(80 - x)$
	$CD = \frac{1}{\sqrt{3}}(80 - x)(2)$
	: AB = CD (the poles have equal height)
	$\Rightarrow \sqrt{3}x = \frac{1}{\sqrt{3}}(80 - x)$
	3x = 80 - x
	4x = 80

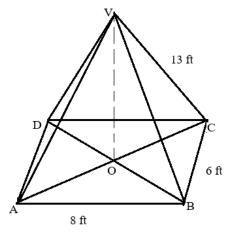
	(00			
	$h = \frac{600}{20}$			
	n = 20			
	h = 30 cm.			
	Volume of container = volume larger cone – volume of smaller cone			
	1 1 1	- volume of smaller cone		
	$=\frac{1}{\pi}R^2-\frac{1}{\pi}r^2$			
	-3^{nn} 3^{nn}			
	$= \frac{1}{3}\pi R^2 - \frac{1}{3}\pi r^2$ $= \frac{1}{3} \times \frac{22}{7} \times (40^2 \times 60 - 20^2 \times 30)$			
	$=\frac{1}{2} \times \frac{1}{7} \times (40^2 \times 60 - 20^2 \times 30)$			
	Volume = $88,000 \text{ cm}^3$.			
	Volume = 00,000 cm:			
	1 litre = $1000 \ cm^3$			
	$880 \text{ litres} = 880 \times 1000$			
	$= 880,000 cm^3$			
		number of litres		
	Number of containers of milk required = $\frac{1}{v}$	volume of the bucket		
	880,000			
	$=\frac{88,000}{88,000}$			
	= 10 buckets / containers.			
	∴ 10 containers of milk are needed daily for	or the camp.		
(b)	$Cost = 880 \times 15,000$			
(=)	UGX = 1,320,000			
		0.4-11-41	Halla dalla to de co	
	∴ the organization will pay UGX1, 320,00	U daily to make sure milk is ava	liable daily in the camp.	
(c)	Value indicated: Kindness			
18(a)	Allowances			
- ()	Item	Amount		
	Marriage	25,000		
	Insurance	15,000		
	Children 10 yrs	5,000		
	14 yrs	8000		
	Total	53,000		
	Let the taxable income be x			
	Taxable income	Income tax		
	10	10,000		
	10,000 ×	10,000		
	100	17.000		
	$10,000 \times \frac{15}{100}$	15,000		
	$10,000 \times \frac{100}{100}$			
	20	20,000		
	$10,000 \times \frac{20}{100}$			
	25	25,000		
	$10,000 \times \frac{25}{100}$	25,000		
	2.0	20.000		
	$10,000 \times \frac{30}{100}$	30,000		
	$10,000 \times \frac{100}{100}$			
	35	0.35x - 175,000		
	$(x-500,000) \times \frac{30}{100}$,		
	100			
	Notes to the second of the sec			
	Note: income tax per month $= 65,000$.			
	Total income tax = $10,000 + 15,000 + 20,000 + 25,000 + 30,000 + 0.35x - 175,000$			
	65,000 = 0.35 - 75,000			
	0.35x = 140,000			
	x = 400,000			
	Taxable income = gross income - total	tal allowance		
	400,000 = G - 53,000			
	G = 453,000			
	∴ The gross monthly income Anne earns is UGX 453,000.			
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		

(b)	Portion of Anne's income available for taxation (taxable income) = UGX 400,000.	
(c)	Percentage of Anne's income that goes to taxes $= \frac{income \ tax}{taxable \ income} \times 100$ $= \frac{65,000}{400,000} \times 100$ $= 16.25\%$ $\therefore \text{ On Anne's income } 16.25\% \text{ goes to paying taxes.}$	
10		

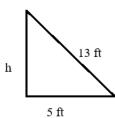
For a parallelogram
$$AB = OC$$
 Let coordinates of C be (x, y) $OC = OB - OA = \binom{9}{2} - \binom{7}{6} = \binom{2}{-4}$ Coordinates of point C are $(2, -4)$ From the graph column vector $AC = (-5, -10)$

Distance
$$AC^2 = 5^2 + 10^2$$

= $25 + 100$
= $\sqrt{125}$
= 11.18
= 11.2 units


Distance of A to C is 11.2 Units

INCOME	RATE	TAX
235,000	0	0
235001 – 400,000	15	$15\% \times (400,000 - 235,000) = 24,750$
400,000 - above	30	30% (91,600,000 - 400,000) = 360,000
		Total Tax = 384,750


Income after Tax = 1600,000 - 384,750= 1,215,250

I think the surveyor should accept the new job officer because it offers a greater net income than the current job.

20 Let the rectangular base be ABCD and vertex, V with center O

(a) Volume = $\frac{1}{3}$ × (base area) × height Height, VO $AC^2 = AB^2 + BC^2$ $= 8^2 + 6^2$ = 100 AC = 10 ft $OC = \frac{1}{2}AC = \frac{1}{2} \times 10 = 5ft$

$$VO^{2} = 13^{2} - 5^{2}$$

= 169 - 25
= 144
 $VO = 12 ft$

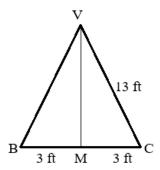

Height, h = 12 ft.

1 ft. = 30.48 cm
8ft = 30.48 × 8 = 243.84 cm
6ft = 30.48 × 6 = 182.88 cm
12ft = 30.48 × 12 = 365.76 cm

$$\therefore Volume = \frac{1}{3} \times (243.84 \times 182.88) \times 365.76 = 5,436,834.546 \text{ cm}^3$$

The volume to which the demonstration items will contain is $5,436,834.546cm^3$.

(b)

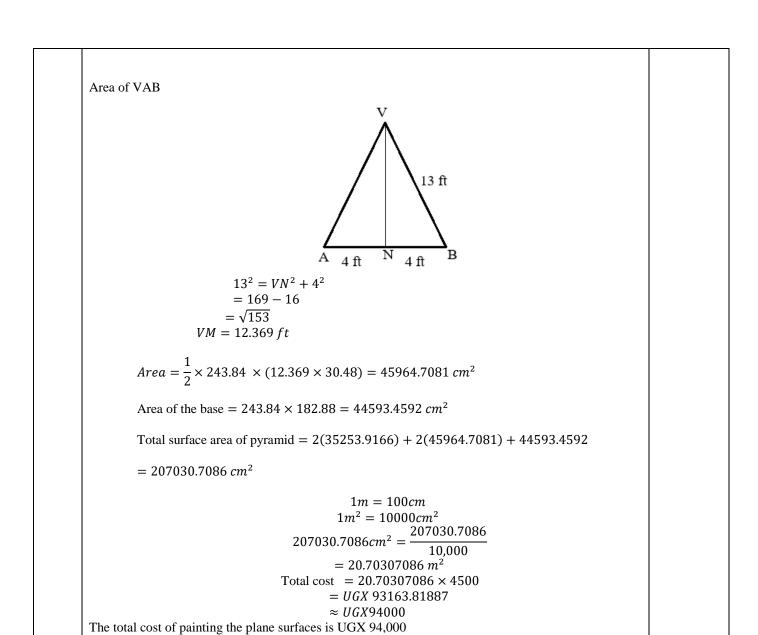

$$\tan \theta = \frac{12}{5}$$

$$\theta = \tan^{-1} \left(\frac{12}{5}\right)$$

$$\theta = 67.38^{\circ}$$

Each slanting pole will be put at an angle of 67.380° with the base of the foot pyramid.

(c) Total surface area of pyramid = $2(area\ of\ VBC) + 2(area\ of\ VAB) + area\ of\ the\ base$ Area of VBC


$$13^{2} = VM^{2} + 3^{2}$$

$$= 169 - 9$$

$$= \sqrt{160}$$

$$VM = 12.649 ft$$

$$Area = \frac{1}{2} \times 182.88 \times (12.649 \times 30.48) = 35253.9166 cm^{2}$$

FOR MORE DETAILS CALL; 0702345644, 0789075335, 0700381488, 0709853969